汽車功率電子產(chǎn)品正成為半導(dǎo)體行業(yè)的關(guān)鍵驅(qū)動因素之一。這些電子產(chǎn)品包括功率元器件,是支撐新型電動汽車?yán)m(xù)航里程達(dá)到至少200英里的核心部件。
雖然智能手機(jī)的出貨量遠(yuǎn)高于汽車(2015年為14億部[1],汽車銷量為8,800萬輛[2]),但汽車的半導(dǎo)體零件含量卻高得多。汽車功率IC穩(wěn)健增長,2015 - 2020年該行業(yè)的年復(fù)合增長率預(yù)計將達(dá)8%[3]。尤其是電池驅(qū)動的電動汽車在該行業(yè)成為強(qiáng)勁增長推動力,2015年5月Teardown.com針對寶馬i3電動車的報告顯示,該車型物料清單中包含100多個電源相關(guān)芯片。
與遵循摩爾定律不斷縮小尺寸的先進(jìn)邏輯晶體管不同,功率元器件FET通常運用更老的技術(shù)節(jié)點,使用200毫米(和更小的)硅片。然而,功率元器件在過去的幾十年中不斷發(fā)展和升級。例如,較厚的PVD鋁鍍層(3-10微米)必須沉積在功率元器件的正面,以實現(xiàn)散熱并提高電學(xué)性能。如果沒有正確沉積,厚鋁層容易出現(xiàn)晶須和錯位,導(dǎo)致災(zāi)難性的后果。應(yīng)用材料公司的Endura PVD HDR高速沉積鋁反應(yīng)腔器可確保盡可能減少此類缺陷,并使沉積速率較其他與之競爭的技術(shù)高50%以上。
此外,5微米至150微米以上的厚外延硅片,進(jìn)行復(fù)雜的摻雜以后,能夠?qū)崿F(xiàn)低電阻(Rds)、較高的關(guān)斷電阻(Roff)和更快的開關(guān)速度。
與傳統(tǒng)外延反應(yīng)腔相比,應(yīng)用材料公司新推出的Centura Pronto? ATM epi外延反應(yīng)腔可提高生長速度30%以上,化學(xué)品消耗量減少25%,縮短了清潔時間,降低了設(shè)備的擁有成本。該系統(tǒng)表現(xiàn)出卓越的晶片內(nèi)均勻性和電阻率,可滿足先進(jìn)功率元器件需求。
半導(dǎo)體薄膜堆層的結(jié)構(gòu)變化,例如將柵極結(jié)構(gòu)從平面(橫向器件)轉(zhuǎn)換成溝道結(jié)構(gòu)(垂直器件),使得絕緣柵雙極晶體管(IGBT)能夠以更低的損耗率實現(xiàn)更快的開關(guān)速度。類似地,從多層外延技術(shù)轉(zhuǎn)向深溝槽填充工藝亦能大幅提升超結(jié)MOSFET(SJM)的性能。
蝕刻工藝需要一些改進(jìn)和調(diào)整,以適應(yīng)這些方案,其中包括更高的深寬比結(jié)構(gòu)。經(jīng)改進(jìn)后的外延硅膜和注入摻雜分布也能增強(qiáng)產(chǎn)品性能。
功率元器件制造商不斷精益求精。公開資料顯示日立的高導(dǎo)電性IGBT采用單獨的浮動P層,以提高柵極可控性和接通電壓。ABB半導(dǎo)體在溝槽柵下構(gòu)建P型柱狀注入,以產(chǎn)生超結(jié)效應(yīng),從而達(dá)到更快的開關(guān)速度。
通過減薄晶片厚度,可有效減少高速開關(guān)的存儲電荷。富士電機(jī)最近研發(fā)出漂移層更薄、溝槽間距更小、電場終止層更強(qiáng)的第七代IGBT。
然而,專家們紛紛意識到,硅基器件的各項性能已接近極限。功率元器件由于受到硅材料本身的限制,每一次性能的提升僅能帶來些許改進(jìn)。
寬禁帶功率元器件
功率IC產(chǎn)業(yè)在尋找新的寬禁帶(WBG)材料,使半導(dǎo)體性能提升到全新的水平。碳化硅(SiC)和氮化鎵(GaN)是當(dāng)前的首選材料,兩者均有一定的優(yōu)勢及劣勢。作為半導(dǎo)體復(fù)合材料,他們具有更大的禁帶寬度和擊穿場強(qiáng),制成的功率元器件具有硅材料無法匹敵的性能。他們被廣泛認(rèn)為將引領(lǐng)下一代功率元器件,開啟半導(dǎo)體時代大變革。